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1. PURPOSE

The purpose of the transport methodology and component analysis is to provide the numerical
methods for simulating radionuclide transport and model setup for transport in the saturated zone
(SZ) site-scale model.  The intended use of this model is to simulate transport in saturated porous
rock under natural or forced gradient flow conditions.  The particle-tracking method of
simulating radionuclide transport is incorporated into the FEHM Version (V) 2.10 [Software
Tracking Number (STN): 10086-2.10-00] computer code, which is a three-dimensional, finite
element flow and transport code.  The resulting changes in the FEHM code are to be submitted to
the software configuration management (CM) system.

This Analysis/Model Report (AMR) establishes the requirements and elements of the design of a
methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain in
support of Total Systems Performance Assessment (TSPA).  Concurrently, process-level flow
model calculations are being carried out in an AMR for the saturated zone (CRWMS M&O
2000a) using FEHM.  In previous TSPA analyses, a simplified system of one-dimensional
streamtubes was envisioned to characterize the radionuclide plume.  Parameters such as dilution
factor and effective porosity were used to model radionuclide transport within each streamtube,
with the composite concentration then determined by superimposing the solutions from the
individual streamtubes.  This analysis had severe limitations, including the lack of physical basis
for the streamtubes, the difficulty in superimposing the solutions in a reasonable fashion, and the
lack of process-level detail in both the flow patterns and the transport processes.

To improve on the work performed so far for the saturated-zone flow and transport modeling,
concerted effort has been made in two areas.  First, the characterization of the hydrogeology and
description of the flow system in the aquifer beneath Yucca Mountain has been updated and
improved (CRWMS M&O 2000a).  Second, the methodology for computing transport of
radionuclides within the saturated zone has been revised to capture a variety of different
processes with accuracy.  The subject of this AMR is the methodology for radionuclide transport.
In this document, we outline the requirements of a radionuclide transport mathematical and
computational model that satisfies the requirements of the project, which is to produce
scientifically defensible transport predictions.  In the process, we address issues raised by
reviewers of both the saturated-zone flow and transport modeling effort and the TSPA Viability
Assessment (VA) abstracted model for radionuclide transport in the saturated zone.  We then
develop the numerical techniques required to implement the method and perform a series of test
cases for the model.

Several code validation cases are presented to demonstrate that the code agrees with accepted
analytical solutions.  These tests are not models of the Yucca Mountain saturated zone, but
merely demonstrate that the mathematical principles and assumptions are properly implemented
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in the code.  Therefore, the values of hydrologic parameters used for the testing are not based on
Yucca Mountain values, but are merely selected for convenience.  The test cases demonstrate
that when the particle-tracking model is employed by those simulating transport in the saturated
zone, the code is functioning properly.

This work is being performed in accordance with the planning outlined in CRWMS M&O
(1999a).
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2. QUALITY ASSURANCE

The activities documented in this AMR were evaluated in accordance with QAP-2-0, Rev 5,
Conduct of Activities, and were determined to be subject to the requirements of the U.S. DOE
Office of Civilian Radioactive Waste Management (OCRWM) Quality Assurance Requirements
and Description (QARD) (DOE 2000).  This evaluation is documented in CRWMS M&O
(1999b-d) and Wemheuer (1999, Activity Evaluation for Work Package 1401213SM1).  This
AMR has been prepared in accordance with procedure AP-3.10Q, Analyses and Models.

The activities documented in this AMR do not involve the storage, maintenance, retrieval, or
transmittal of quality-affecting data or information using electronic media and do not require the
implementation of process controls in accordance with AP-SV.1Q, Control of the Electronic
Management of Data.
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3. COMPUTER SOFTWARE AND MODEL USAGE

The computer software code used as the basis to perform/model the saturated-zone particle
tracking in this AMR is FEHM V2.0 (STN: 10031-2.00-00) for a SUN Ultra Sparc, Unix
platform.  However, this version of the code was not used in any calculations but only as the
starting point for code development.  A revised version of the code that includes the particle-
tracking algorithm described in this AMR is currently being qualified under AP-SI.1Q, Software
Management, as FEHM V2.10 (STN: 10086-2.10-00).  Version 2.10 is the version used for all
calculations performed in this AMR; therefore, the software is currently unqualified and all
results require confirmation.  FEHM V2.10 was used in accordance with Section 5.11 of AP-
SI.1Q.

The input and output files for these analyses are found in DTN: LA9912BR12213S.001.

The software routine 3DADE is used to solve analytical solutions to validate the particle-
tracking model.  This single-use routine is identified in Table 1 and documented in Attachment I.

Table 1. Computer Software and Routines

Software Name Version Software Tracking
Number (STN)

Computer Platform

FEHM 2.10 10086-2.10-00 SUN with UNIX OS, FORTRAN

Software Routine Documentation

3DADE Rev 00 Attachment I SUN with UNIX OS, FORTRAN

In addition, the graphics software package FORTNER PLOT SUN Workstations V1.3 was used
in this analysis and documentation for plotting graphs.  It was not used in any quality-affecting
work.
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4. INPUTS

4.1 DATA AND PARAMETERS

There are no site-specific data or parameters used in this AMR.  All simulations are carried out
with appropriate values of hydrologic and transport parameters, that is, values similar to those to
be used in the saturated-zone flow and transport modeling activities.  However, the numerical
simulations performed in this AMR do not require referenceable parameter values.

4.2 CRITERIA

This AMR complies with the DOE interim guidance (Dyer 1999).  Subparts of the interim
guidance that apply to this analysis or modeling activity are those pertaining to the
characterization of the Yucca Mountain site (Subpart B, Section 15), the compilation of
information regarding hydrology of the site in support of the License Application (Subpart B,
Section 21(c)(1)(ii)), and the definition of hydrologic parameters and conceptual models used in
performance assessment (Subpart E, Section 114(a)).

4.3 CODES AND STANDARDS

No specific formally established codes or standards have been identified as applying to this
modeling activity.
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5. ASSUMPTIONS

1) Particle tracking is a numerical technique that is acceptable for simulating the transport of
radionuclides in the saturated zone at Yucca Mountain (assumption used throughout
document).  Particle-tracking techniques have a long history of use in such applications (e.g.,
Pollock 1988; Tompson and Gelhar 1990; Wen and Gomez-Hernandez 1996), thereby
justifying this assumption.  This assumption does not require verification.

2) The anisotropic dispersion coefficient tensor developed in this AMR is suitable for
characterizing dispersion via the random walk particle-tracking method (used in Section
6.1).  Random-walk techniques have been derived rigorously in the past (e.g., Tompson et al.
1987; Tompson and Gelhar 1990) and have been accepted by the hydrologic community for
simulating dispersion. The use of a dispersion coefficient tensor is an appropriate
simplification for characterizing dispersion, as evidenced by its use as the starting point in
virtually all numerical flow and transport codes.  The particular form derived in this AMR
reflects the need to account for different dispersivity values in the directions normal to the
local flow direction, as shown in field studies discussed by Gelhar (1997, p. 164, Figure 8).
This assumption does not require verification.

3) Matrix diffusion can be characterized using an abstracted model of uniform flow and
transport in equally spaced, parallel fractures (used in Section 6.2).  Because the particle-
tracking model is intended to be used in large-scale simulations, the size of a computational
grid block is likely to be much greater than the typical fracture spacing.  In such
circumstances, the use of an effective spacing to capture the transport behavior is reasonable.
Although the constant-spacing assumption is not literally true, it can be justified on the basis
of the impossibility of acquiring the data needed to completely characterize the location and
flow rate of every fracture in the saturated zone.  In numerical modeling studies, such
uncertainties are commonly addressed through the use of simpler conceptual models such as
this one, combined with sensitivity analyses to assess the importance of the uncertain
parameters to the final model result.  Therefore, it is recommended that when this model is
used, that a broad range of fracture spacings be used and the influence on the final results be
quantified.  This assumption does not require verification.
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6. ANALYSIS/MODEL

The model documented in this AMR does not provide estimates of any of the factors included in
the Post-Closure Safety Case and was deemed to be of Level 3 importance pursuant to AP-
3.10Q.

In this section we outline the requirements of the radionuclide transport model as the first step
toward developing the computational and mathematical models needed in Performance
Assessment (PA) calculations.

1. The transport model predictions must be based on a three-dimensional process-level flow
model.

The TSPA-VA streamtube model (DOE 1998, p. 3-139, Figure 3-68) was an abstraction with
little physical basis.  In the upcoming TSPA analysis, we will formulate calculations directly
using a process-level flow model.  Three-dimensional effects are deemed to be important, so the
transport of radionuclides should be based directly on the best available model at the time the
calculations must be completed.  This improvement will also have the advantage of compatibility
with the unsaturated-zone flow and transport model in terms of its complexity and lack of
significant simplifications when implemented in the TSPA Site Recommendation (SR)
calculations.

In addition to consistency, it is advantageous to base transport predictions on the same models
used in flow-model sensitivity studies.  As outlined in the Work Package Planning Summary
(CRWMS M&O 1999d) for the Saturated Zone Process Model Report (PMR), sensitivity to
hydrogeologic framework uncertainties, climate change, and hydrologic parameter uncertainty
are all being carried out.  By predicting transport behavior for all of these scenarios and assessing
the significance of the uncertainties, the flow and radionuclide transport predictions included in
the TSPA calculations will be a subset of a larger number of flow and transport simulations
carried out by the flow-model development team.  Finally, transport of natural environmental
tracers and dissolved species will be performed as part of the three-dimensional model
development.  Therefore, radionuclide transport predictions based on the same flow and transport
model will lend credibility to the predictions.

The transport model must be able to handle extremes of the advective-dispersive transport that
include a wide range of dispersivity values.  Without evidence to the contrary, dispersivity values
transverse to the flow direction should be assumed to be low to avoid overestimating the amount
of radionuclide dilution caused by transverse dispersion.  For example, transverse dispersivity
values measured at field sites such as the Borden, Cape Cod, and Condie aquifers, were on the
order of millimeters to centimeters in the vertical direction (e.g., Gelhar 1997, Figure 8, p. 164).
Theoretical studies (CRWMS M&O 2000b) have also shown that small values of transverse
vertical dispersivity are appropriate.  Capturing this low level of dispersion transverse to the
mean trajectory of a solute plume is extremely difficult using typical finite-element or finite-
volume transport models unless extraordinarily fine grid discretization is employed.
Furthermore, the final few kilometers (km) of travel to a 20- or 25-km compliance point will be
through alluvial deposits, for which the scientific community has determined that low transverse
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dispersivity is likely (Gelhar 1997, p. 164, Figure 8).  Therefore, the model must be able to
handle cases of low transverse dispersivity, including a value of 0, throughout the entire travel
path or larger dispersivity in the fractured volcanic rocks transitioning abruptly to low
dispersivity in the alluvium.

The method for introducing the radionuclide source term into the model must be flexible enough
to handle both small and large source regions at the water table.  In the TSPA-VA abstracted
transport model for the saturated zone (DOE 1998), large source regions were assumed over
which radionuclides were introduced to the saturated-zone model.  Spreading of radionuclide
mass (computed from the unsaturated-zone flow and transport model) over large areas would
only be valid if the source at the repository is due to many waste packages leaking
simultaneously and if there is sufficient transverse dispersion within the unsaturated zone to
smear the source within the percolating unsaturated-zone fluid.  Although smearing the
radionuclide mass may be a good assumption under some circumstances, the case of releases
from a small number of waste packages clearly cannot be handled with such a model.  For
example, in the first 10,000 years for the TSPA-VA base-case model, only a few tens of waste
packages had failed.  Taking radionuclide mass releases from this system and smearing them
over large areas introduces large, artificial dilution factors at the unsaturated-zone–saturated-
zone (UZ-SZ) interface.  It is important to point out that this modeling decision was probably
counteracted by an overly conservative dilution factor for transport within the saturated zone,
especially for the case of transport of small individual “microplumes” in the aquifer.  Instead of
counteracting a nonconservative assumption with a conservative one and hoping that the final
answer is correct, the new transport model must be able to handle small source regions.

2. It may be necessary to compute the transport of plumes that have smaller dimensions than
the grid block size of the flow model.

The need to simulate “microplume” transport was alluded to above.  If these plumes have
characteristic dimensions that are of the same order or smaller than the grid block size of the
flow simulation, then finite-element simulations of transport cannot capture the details of
radionuclide spreading.  Numerical dispersion effects arising from such an approach can easily
be misinterpreted as dilution.  A numerical method that retains the accuracy of the local
concentration for small plumes is required.  In this model we use the method of Pollock (1988) to
estimate the velocity field at the sub-grid block level through velocity interpolation.  This
method is commonly accepted for particle-tracking algorithms.

3. The transport model must capture the important physicochemical processes known or
suspected to occur in fractured porous rock.

In the TSPA-VA calculations, the effective porosity was used as an uncertain parameter that was
assumed to capture the intricacies of transport through fractured rock.  The distribution of this
uncertain parameter was set using the results of the Expert Elicitation (CRWMS M&O 1998).  A
side effect of this approach was that sorption coefficients had to be adjusted along with the
effective porosity in an attempt to achieve a conservative result, that is, a result that, if anything,
yields a higher dose than would have been obtained with a more rigorous formulation.  This
approach needs to be improved in the new transport model formulation.  Reimus et al. (1999)
have shown that the behavior of the C-wells reactive tracer test can be explained using a dual-
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porosity transport model that includes matrix diffusion and sorption on the matrix rock.
Previously, Robinson (1994) proposed that a matrix-diffusion model should be used to model
transport of radionuclides in the saturated zone and demonstrated that the C-wells experiments
(not yet carried out at the time of Robinson’s paper) be used to validate this concept.  The
proposed model was based on numerous theoretical and experimental studies of transport in
fractured rock.  The fact that the test results are consistent with the matrix-diffusion model
implies that the radionuclide transport model, to be consistent with the results of the field
experiment, must have a dual-porosity transport formulation.  We, therefore, develop a dual-
porosity transport model for characterizing transport in fractured tuff.  Sorption coefficients are
applied to the matrix domain and come into play only if significant diffusion into the matrix
pores occurs as radionuclides travel through the system.  This transport model is much more
physically based, is consistent with field studies carried out in a variety of fractured rocks,
including at Yucca Mountain and the Nevada Test Site, and thus is far more defensible than the
approach taken in TSPA-VA.  To implement the dual porosity transport model, a particle-
tracking approach is taken in which aqueous species are modeled as discrete particles.  An
additional benefit of this approach is that particle tracking is also being used in the unsaturated-
zone transport model.

4.  It must be possible to abstract the results of the process-level transport model for use in
TSPA-SR calculations.

The main purpose of the radionuclide transport model is to predict the concentrations within the
aquifer so that pumping-well or other water-use scenarios can be constructed.  Concentrations
are then converted to dose using biosphere models.  One “end-product” of the saturated-zone
radionuclide transport model is, therefore, a spatial and temporal distribution of radionuclides
within the aquifer.  In TSPA-VA (DOE 1998, p. 3-142, Figure 3-69), the concentration within
the saturated zone was computed as a unit breakthrough curve, which is defined as the response
to a steady-state mass flux input at the footprint of the repository at the water table.  These
breakthrough curves were converted to actual concentrations at the compliance point through
numerical convolution using the source term computed from the unsaturated-zone flow and
transport model.  Because a similar abstraction is being employed in TSPA-SR, breakthrough
curves at the compliance point will again be a required output of the saturated-zone model.
These breakthrough curves do not need to consider radioactive decay because that process is
considered during the numerical convolution step.  In addition to providing distributions of
arrival times, another desirable feature of the model is to allow for the calculation of in situ
concentrations of radionuclide concentration at specified locations in the model.

To implement a model with assumptions just listed, a particle-tracking method was used to
simulate solute transport.  Particle-tracking methods provide an efficient numerical algorithm for
modeling large-scale transport of solutes in heterogeneous porous media (Tompson and Gelhar
1990).  By contrast, continuum approaches involving finite-difference or finite-element solution
methods generally suffer from numerical dispersion, primarily because of the large grid blocks
required to model large-scale systems.  Furthermore, using particle tracking, plumes can be
simulated at scales smaller than the grid block size, and source regions (zones in which particles
are initially placed) can be smaller than the grid spacing.  Therefore, the primary numerical
requirements listed in Section 5 are satisfied by using a particle-tracking model approach.
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In this section the particle-tracking technique is briefly summarized, and in subsequent sections a
detailed description of the mathematical method is provided.  Transport is decomposed into three
interrelated components: advective, dispersive, and physicochemical.  For the advective
component, the particle-tracking method developed here is based on the Lagrangian point of
view, in which particles move with the prevailing flow velocity.  To do this, the hydraulic heads
computed at each node of the computational mesh in the flow solution are used, along with
Darcy’s law, to compute the velocities at the finite volume cell faces surrounding each node.
Trajectories are computed for one particle at a time.  The advective component of the solute
transport is computed using the method of Pollock (1988).  In this method, a semianalytical
solution to the particle tracks is obtained by interpolating the flow velocities linearly within each
computational cell, permitting the flow lines to be computed in an efficient manner.  The exit
time of a particle entering a computational cell is determined from the semianalytical solution.
Then, to incorporate dispersion, the model takes small increments of time during the advective
transport steps to calculate the displacement of the particle due to dispersion.  The dispersive
component of the transport is calculated using the random-walk method (Tompson and Gelhar
1990).  This approach is based on the analogy between the mass transport equation and the
Fokker-Plank equation of statistical physics (Van Kampen 1981).  The dispersive displacement
of each particle is computed using uniform random numbers, based on the dispersivity tensor and
the porous flow velocity field at the particle location.  In this model, the proper terms in the
random-walk algorithm are derived from an anisotropic version of the dispersion coefficient
tensor defined by Burnett and Frind (1987).  Finally, the sorption and diffusion processes are
captured using a matrix-diffusion submodel, which delays particles in accordance with a
semianalytical solution that includes sorption and diffusion into the rock matrix away from the
flowing fractures.  Linear equilibrium sorption and diffusion from equally spaced fractures into a
stagnant matrix fluid are assumed.

6.1 ADVECTIVE-DISPERSIVE TRANSPORT

The fundamental mass transport equation for transport of a nonreactive, dilute species in a
saturated porous medium (with no sources or sinks) has the form (e.g., Bear 1988, p. 617,
Equation 10.5.2):

∂C

∂ t
+ ∇⋅ (v C) − ∇⋅(D∇C) = 0, (Eq. 1)

where

C  denotes the solute concentration in units of moles per liter
t is time
v  designates the solute average pore-water velocity vector
D  denotes the dispersion tensor.

This equation serves as the starting point for all subsequent development below.

For an isotropic medium, the dispersion has the form (Bear 1988, p. 615):
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where

αL  and αT  denote the longitudinal and transverse dispersivities, respectively
D0  represents the molecular diffusion constant
i  and j are indices representing the coordinate directions

ijδ  is the Kronecker delta function

v = v  is the magnitude of the velocity vector.

Defining the three Cartesian coordinate axes as 1, 2, and 3, the dispersion tensor given in
Equation 2 can be written in matrix form as
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where I is the identity matrix.  In an anisotropic system, the expression for the dispersion tensor
is more complex, involving as many as 36 independent parameters to characterize (Bear 1988,
p. 611).  Burnett and Frind (1987) proposed a simplified form that we have adopted in the
particle-tracking algorithm.  This representation of the dispersion tensor contains three
parameters: longitudinal (αL ), transverse horizontal (αT

H
), and transverse vertical (αT

V
)

dispersivities.  This formulation was chosen because of its relative simplicity and
correspondence to the primary terms normally estimated in field studies.  Particle-tracking
models based on the more common dispersion coefficient tensor of Equations 2 and 3 do not
allow the transverse dispersivities to be set to different values in the horizontal and vertical
directions and, hence, is inadequate for the present purposes.  For the anisotropic model, the
dispersion tensor has the form:
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We have determined that, in particle-tracking methods, incorporation of the off-diagonal terms of
the dispersion tensor is important for obtaining the proper behavior for dispersion parallel and
perpendicular to the direction of flow when flow is not parallel to any of the coordinate axes, as
in a heterogeneous flow field, for example.  When the off-diagonal terms are omitted, particle-
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plume spreading exhibits an orientation effect along the coordinate axes even when the flow is
not oriented with the axes. To prevent this non-physical behavior, all of the terms in Equation 4
are retained in the model development below.

Given a steady-state velocity field generated, for example, for an arbitrary permeability field, a
random walk is superimposed on the flow field to describe dispersion and molecular diffusion.
The general approach used in particle tracking is to replace the partial differential equation for
the solute concentration C , generally expressed by Equation 1, with random-walk displacements
defined in differential form by the Langevin equation (Gardiner 1997, p. 80):

dx = A(x,t)dt + B(x,t)dW(t), (Eq. 5)

for position vector x(t).  The matrix A  represents the deterministic background displacement
determined by v  and, in addition, contains contributions from the dispersion tensor.  The
displacement matrix B  refers to a stochastic random-walk process that incorporates molecular
diffusion and dispersion.  The differential dW(t)  represents a Wiener process describing
Brownian motion with the properties:

< dW > = 0, (Eq. 6)

and

< dW(t)dW(t) > = Idt, (Eq. 7)

where the angular brackets represent the ensemble mean.

The equivalent Fokker-Plank equation corresponding to the Langevin equation (Equation 5) for
the conditional probability P(x,t x0 , t0 )  is given by (Gardiner 1997, p. 97):

∂P
∂t

= −∇ ⋅ A(x,t)P[ ]+ ∇ : ∇ 1

2
B ˜ B P

 
 

 
 ,

(Eq. 8)

where ˜ B  represents the transpose matrix.  The Fokker-Plank equation may be written in the form
of the transport equation by rearranging Equation 8 to obtain

∂P
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= −∇ ⋅ A(x,t) −
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. (Eq. 9)

Comparing this modified Fokker-Plank equation with the continuum-based transport equation
given in Equation 1 yields the identifications

P(x,t | x0,t0 ) =
NA

N
C(x, t), (Eq. 10)

where N  represents the number of particles and NA denotes Avogadro’s number,

A(x,t) = v + ∇⋅ D, (Eq. 11)
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and

1

2
B ˜ B = D. (Eq. 12)

Therefore, it is necessary to obtain the displacement matrix B  based on the dispersion tensor D .
To do this, the approach used by Tompson et al. (1987) is followed in which a transformation
that diagonalizes the dispersion tensor is carried out.  By construction, the eigenvectors of the
dispersion tensor depend only on the components of the flow velocity but not on the dispersivity
values themselves.  One eigenvector always points in the direction of the flow velocity.  The
other two eigenvectors are perpendicular to the direction of flow.  The eigenvalue problem for D
reads:

Deλ = λeλ , (Eq. 13)

with eigenvalue λ  and eigenvector eλ .  Because the dispersion tensor is symmetric (Bear 1988,
p. 611), there exists an orthogonal transformation U  that diagonalizes D  (Tompson et al. 1987,
p. 106, Equation A-3):

˜ U DU ˜ U eλ = λ ˜ U eλ , (Eq. 14)

with

˜ U DU = ˆ D , (Eq. 15)

where ˆ D  is a diagonal matrix, and U  satisfies the relations:

U ˜ U = ˜ U U = I. (Eq. 16)

Expressing ˆ D  in the form

ˆ D = Q ˜ Q , (Eq. 17)

with Q  diagonal, then gives

2D = 2U ˆ D ˜ U = 2UQ ˜ Q ˜ U = 2UQ ˜ U ̃  Q = B ˜ B . (Eq. 18)

From this relation it follows that the displacement matrix B  is given by (Tompson et al. 1987, p.
107, Equation A-10):

B = 2UQ. (Eq. 19)

The implementation of the particle-tracking model requires a finite difference form of Equation 5
at time step n, which in this model is given by

Xi
n = Xi

n−1 + Ai∆t + ∆t Bij
j

∑ Z j , (Eq. 20)
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with

dWj = Zj ∆t, (Eq. 21)

for a time step ∆t , where Zj  represents a random number.  In matrix notation,

Xn = Xn−1 + A∆t + ∆tBZ . (Eq. 22)

Sampling Z  from a uniform distribution (Tompson et al. 1987, p. 40) leads to the expression:

Z = 2 3Z' , (Eq. 23)

with Z'  occurring with unit probability over the interval – 1

2
 to 1

2
.  Then,

< ZZ >= 12 < Z' Z' >= 1, (Eq. 24)

since

< Z' Z' >= Z'2

−1/ 2

1 / 2

∫ dZ' = 1

12
. (Eq. 25)

The final step in the derivation is to determine the form of the displacement matrix B .  Tompson
et al. (1987) derived the expression for an isotropic system, but the equivalent derivation for an
anisotropic dispersion model was not available and, hence, is derived below.  We assume the
anisotropic dispersion tensor is given by Equation 4.  The matrix D  is symmetric and may be
diagonalized as in the isotropic case.  Thus, an orthogonal transformation U  exists such that

˜ U [D − D0I]U =
α Lv

α T
H(v1

2 + v2
2 ) +α T

Vv3
2

αT
Vv

 

 

 
 

 

 
  . (Eq. 26)

Thus, in the anisotropic case, the eigenvalues are distinct, and there exist three unique
normalized eigenvectors.  The matrix U  has the form:

U =

v1

v
− v2

v1
2 + v2

2
− v1v3

(v1
2 + v2

2)2 + v1
2v3

2 + v2
2v3

2

v2

v
− v1

v1
2 + v2

2
− v2v3

(v1
2 + v2

2)2 + v1
2v3

2 + v2
2v3

2

v3

v
0 − v1

2 + v2
2

(v1
2 + v2

2)2 + v1
2v3

2 + v2
2v3

2

 

 

 
 
 
 
 

 

 

 
 
 
 
 

. (Eq. 27)
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The columns of U  form an orthonormal set of eigenvectors of D .  This transformation,
however, becomes singular if v1 = v2 = 0 .  In this case, the dispersion tensor is diagonal, and the
transformation matrix U  is not needed.

The dispersion tensor for an anisotropic system reduces to the isotropic case for equal transverse
horizontal and vertical dispersivities.  Because the eigenvectors are independent of the
dispersivity coefficients and depend only on the flow velocity, the eigenvectors for the
anisotropic case must also be eigenvectors for the isotropic case.  However, the converse is not
true.

For the anisotropic case, the matrix Q  is given by

Q =

α Lv + D0 0 0

0 αT
H (v1

2 + v2
2 )

v
+ αT

V v3
2

v
+ D0

0

0 0 α T
V v + D0

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

. (Eq. 28)

The displacement matrix B , thus, has the form:

B =

v1

v
2(α Lv + D0) − v2

v1
2 + v2

2
2

α T
H(v1

2 + v2
2 ) + αT

V v3
2

v
+ D0

 
  

 
  −

v1v3 2(αT
Vv + D0 )

(v1
2 + v2

2 )2 + v1
2v3

2 + v2
2v3

2

v2

v
2(α Lv + D0 ) − v1

v1
2 + v2

2
2

α T
H(v1

2 + v2
2 ) + αT

V v3
2

v
+ D0

 
  

 
  −

v2v3 2(α T
Vv + D0 )

(v1
2 + v2

2 )2 + v1
2v3

2 + v2
2v3

2

v3

v
2(α Lv + D0 ) 0 − (v1

2 + v2
2 ) 2(α T

Vv + D0 )

(v1
2 + v2

2 )2 + v1
2v3

2 + v2
2v3

2

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

(Eq. 29)

Again the displacement matrix simplifies for flow along one of the coordinate axes.  For v = v1 ,
Equation  29 reduces to:



MDL-NBS-HS-000010, Rev 00 28 July 2000

B =

2(α Lv + D0 ) 0 0

0 − 2(αT
Hv + D0 ) 0

0 0 − 2(αT
Vv + D0 )

 

 

 
 
 
 
 

 

 

 
 
 
 
 

. (Eq. 30)

For v = v2 :

B =

0 − 2(αT
Hv + D0 ) 0

2(α Lv + D0 ) 0 0

0 0 − 2(αT
Vv + D0 )

 

 

 
 
 
 
 

 

 

 
 
 
 
 

. (Eq. 31)

For v = v3 :

B =

0 0 − 2(αT
Vv + D0 )

0 − 2(αT
Vv + D0 ) 0

2(α Lv + D0 ) 0 0

 

 

 
 
 
 
 

 

 

 
 
 
 
 

. (Eq. 32)

In summary, the particle trajectory is computed by a finite difference technique expressed in
Equation 22.  The first displacement term of this equation ( Ai∆t ) is deterministic, with A
defined in Equation 11.  This expression captures the movement of particles in the streamlines
defined by the flow field.  The term ∇ ⋅ D∆t  is required to correctly reproduce the transport
equation for cases in which there are gradients in velocity or dispersion coefficient.  It reduces to
zero for uniform flow fields and constant dispersivity.  What is retained in this case is transport
along the flow streamline governed by the flow field.  The second term in Equation 22 is a
stochastic random-walk term to simulate dispersion, with the form of the matrix B  derived for
an anisotropic dispersion coefficient tensor in Equation 29.

So far, it has been taken for granted that the local velocity vector is known at all locations in
space.  We now discuss specific implementation issues associated with incorporating this
particle-tracking approach using a velocity field determined from a finite-element code.  We now
discuss these details for the particle-tracking model as implemented in FEHM V2.10 (STN:
10086-2.10-00).  Determination of the advection portion of the deterministic term Ai∆t  requires
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that the local velocity be determined.  In this version of the code, we restrict the method to
orthogonal finite-element grids.  This simplification means that the control volume associated
with each grid point is a brick-shaped element.  Velocity interpolation within a cell is then
determined quickly and easily using the velocity interpolation scheme first derived by Pollock
(1988).  Using that scheme, the code determines, for a given particle at a given location within
the cell, the time required to exit the cell and the location where it leaves.  If this time is greater
than the time step ∆t , the particle location within the cell is computed.  If the time is less than
the time step ∆t , the particle is forced to stop at this location and then proceed in another step
within the adjoining cell.  This process is repeated until the ending time ∆t  is reached.  At the
end of this time step, the term ∇ ⋅ D∆t  is used to deterministically move the particle to correct for
gradients in the dispersion coefficient.  A simple differencing scheme on the finite-element grid
is used to compute these terms.  Finally, the random-walk term is applied (the final term in
Equation 22) using the B  matrix derived above (Equation 29).

For this method to work properly, the time step must be selected such that, on average, a particle
takes several time steps within each cell.  In a system with large variations in pore-water velocity
due to permeability and porosity differences from cell to cell, the appropriate time step can vary
greatly throughout the domain.  In FEHM, this factor is accounted for by dynamically
determining the characteristic time step in an approach similar to that developed by Wen and
Gomez-Hernandez (1996).  In a given cell, the magnitude of the velocity in the cell is used to
scale the time step.  The time required to traverse the cell completely in each of the three
coordinate directions is computed, and the minimum is determined.  Then, a user-defined
parameter called the Courant factor is multiplied by this minimum time to obtain the time step
for the particle within the cell.  This approach ensures that several steps are taken by a particle
within a cell but minimizes computational time by tailoring the time step to the characteristic
velocity within each cell.

Applying the random-walk method on grids and flow fields, such as the saturated-zone flow
model, it was found that the theoretically simple inclusion of the ∇ ⋅ D∆t  term to correct for
velocity gradients may not be sufficient to account for regions with highly variable velocity
fields.  In short, computation of ∇ ⋅ D  on the scale of the finite-element grid may not be
sufficient to capture the magnitude of this term adequately.  For example, in high-permeability
zones immediately adjacent to confining units of low permeability, the gradient is not captured
sufficiently accurately to prevent the artificial meandering of a small number of particles into the
low-permeability region.  As a result, some particles are held up for an unrealistically long time
in these zones, resulting in a nonconservative tailing of the solute breakthrough curve at a
downstream location.  To correct this problem, a user-defined velocity-scaling parameter can be
defined to prohibit particles from entering the low-velocity domain by random-walk processes.
If the ratio of the velocity before and after the random-walk jump is less than this parameter, the
code prohibits the jump, and the particle is returned to the original position where another jump
is taken with a different set of random numbers.  This simple correction serves the same purpose
as the ∇ ⋅ D∆t  term but is more foolproof in maintaining a physically meaningful set of random-
walk jumps.

To report the results of a particle-tracking simulation, two options are available.  The first
requires the definition of a zone consisting of a set of finite-element grid points representing a
portion of the model domain where transport results are desired.  For example, a “compliance
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boundary,” which is a given distance from the repository, can be defined by listing all of the
nodes in the boundary.  Then the code determines the first arrival time of each particle at any
node in this fence and reports the cumulative arrival time distribution for all particles.  This
arrival-time distribution can then be converted to a pumping-well concentration, and the
resulting curve can be used as the input to the convolution portion of the PA analysis.
Alternatively, the concentration of particles at any cell in the finite-element domain can be
reported as the number of particles residing in the cell divided by the fluid mass in the cell.
Concentrations computed in this way represent the in-situ concentration in response to the
injection of a pulse of solute at time 0.  To obtain the cumulative breakthrough curve, we may
perform a time integration of these results, yielding the in-situ concentration breakthrough curve
at the node in response to a step change in concentration.  Both pulse and step response curves
can be obtained in the FEHM particle-tracking code.

6.2 MATRIX DIFFUSION

To incorporate the influence of sorption and matrix diffusion, the residence time transfer
function (RTTF) particle-tracking method outlined in the FEHM Models and Methods document
(Zyvoloski et al. 1997, pp. 41–42) has been adapted to the particle-tracking algorithm.  In this
method, adjustments to the travel time of a particle are made to account for the influence of
physicochemical processes such as sorption and matrix diffusion.  During its path along a
streamline, the particle travel time is governed by a transfer function describing the probability
of the particle spending a given length of time on that portion of its path.  For a cumulative
probability distribution function of particle residence times, the travel time of a particle along
this portion of its path is computed by generating a random number between 0 and 1 and
determining the corresponding residence time.  On average, if a large number of particles travel
through this portion of the model domain, the cumulative residence time distribution of particles
will reproduce the shape of the transfer function.  The form of the transfer function is derived
from an analytical or numerical solution to capture the appropriate processes being considered.

In this particle-tracking algorithm, the schematic model depicted in Figure 1 is used to provide a
transfer function for the case of fracture flow and diffusion between equally spaced fractures.  In
this model:

z is the spatial coordinate along the fracture
t is the time
2b is the fracture aperture
2B is the mean fracture spacing
v is the linear groundwater velocity in the fracture
θ is the porosity of the matrix
R′ is the retardation factor in the matrix
R is the retardation factor in the fracture
D′ is the matrix effective diffusion coefficient
c is the concentration at z along the fracture
c0 is the source concentration at z = z0.
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Figure 1.  Schematic of the Matrix Diffusion Submodel

The transient solution for contaminant transport with D = 0 in parallel fractures, for c = c0  at
z = 0 , and ∂c ∂x = 0  at x = B  is given by (Sudicky and Frind 1982):

c
c0

= 0, T 0 < 0 (Eq. 33)

c
c0

=
1
π

exp
Rλz

v
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λ2 + ε 4 / 40

∞
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+
ε 2

2
sin(Ω I

0 ) + λ cos(Ω I
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  dε, T 0 > 0 , (Eq. 34)

where λ  is a first-order decay constant, ε  is an integration variable, and

T 0 = t −
Rz
v

(Eq. 35)
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(Eq. 36)
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(Eq. 36)
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, (Eq. 38)

with

ω =
θ(R' D' )1 / 2 z

bv
(Eq. 39)

σ = (R' / D' )1/ 2(B − b) . (Eq. 40)

Using the transformation variables:

τ0 =
z
v

(Eq. 41)

ε1 = ετ 0
1/ 2 , (Eq. 42)

Equations 33 through 42 can be rewritten as:

c
c0

= 0, T1
0 < 0 (Eq. 43)
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0 > 0 , (Eq. 44)

where

T1
0 =

t

τ0

− R (Eq. 45)
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 (Eq. 46)
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MDL-NBS-HS-000010, Rev 00 33 July 2000
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 , (Eq. 48)

with

ω1 =
θ(R' D' τ0 )1/ 2

b
(Eq. 49)

σ1 = (
R'

D' τ0

)1/ 2 (B − b). (Eq. 50)

For the case of no radioactive decay (λ = 0 ):

c

c0

=
1

π
2

ε1
0

∞

∫ exp(ε R
0 ) sin(ε I

0 ) + sin(Ω I
0 )[ ]dε1 . (Eq. 51)

Therefore, to implement this model, the algorithm requires the input of transport parameters
defined in Equations 49 and 50.  With the transport parameters and the unretarded travel time τ0

within a given portion of the path known from the advection part of the particle, values of ω1

and σ1 are computed, thereby fully defining the transfer function for this portion of the particle’s
travel path.  Given these parameters, the model returns a value of the delayed travel time of the
particle from Equation 45 that is consistent with the matrix diffusion model.  To implement this
model in FEHM, a series of type curves were generated (CRWMS M&O 2000c) at specified
values of ω1  and σ1.  For given values of the parameters, the code performs a linear interpolation
between the nearest type curves to obtain the result.  This approach of tabulating the results of
the analytical solution is much more computationally efficient than computing the values through
integration at run time.  Under limiting conditions of low diffusion and/or large fracture spacing,
the infinite spacing solution of Tang et al. (1981) implemented in the cell-based particle-tracking
algorithm of FEHM can be used instead of the finite spacing model.  A provision in the code
allows the Tang solution to be invoked in this particle-tracking model as well, but it should be
used only when the characteristic diffusion time to the centerline between the fractures (of order
B2 ′ D ) is much greater than the time of the simulation.

The final step of the model development is to integrate the matrix diffusion model with the
random-walk transport model developed in Section 6.1.  Specifically, the time intervals over
which the time delays are applied must be set in a manner that allows for computationally
efficient and accurate solutions to be obtained.  In this model, the time delay is applied to a
particle at the time at which it exits a cell, after having determined the cumulative time the
particle spent in advective transport through the cell.  Within a cell, the transport properties of
diffusion and sorption are, by definition, uniform, so that a unique set of transport dimensionless
parameters can be defined.  Alternatively, the time delay could be applied at each segment of the
particle path, resulting in potentially many time delays for a particle within each cell as it is
transported by advection and random-walk dispersion.  However, in initial prototype testing
using this approach, it was determined that the technique, although theoretically equivalent to the
application of time delay once per cell, showed that practical limitations of reduced accuracy and
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reduced computational efficiency resulted.  Therefore, the code was developed with the time
delay applied only at the time the particle exits the cell, which can occur either by advection or
by random-walk dispersion.

To apply the time delay, the particle is held at that location until the time of the simulation run
catches up to the time of that particle, after which the particle is allowed to resume its transport.
Finally, it is noted that for sorption without matrix diffusion, the time delay is computed
deterministically by computing a retardation factor based on the sorption coefficient Kd, but
otherwise, the method is identical to the matrix-diffusion method.  Alternatively, this particular
case could have been handled through a simple adjustment of the transport velocity, but the
implementation using the time-delay method was simpler because it is consistent with the
matrix-diffusion method just described.

6.3 TRANSPORT METHODOLOGY VALIDATION

Several test cases have been executed to confirm the accuracy of the particle-tracking method by
comparison with analytical solutions.  Acceptance criteria will be discussed as each test case is
presented.  The exact values for the parameters chosen for the test cases are not important
because the object of these model runs is to demonstrate the use of the model under conditions
similar to those for which the code is intended to be used, namely transport in saturated porous
rock under natural or forced gradient flow conditions.  All cases reported here are performed on
a three-dimensional grid in which flow is aligned with the x-axis. The exact parameterization is
unimportant because all that is required of this suite of tests is that the particle-tracking method
reproduce the results of an analytical solution carried out at the same flow velocity and
dispersion parameters.  The grid dimensions are 10 km by 20 km in the horizontal directions and
500 meters (m) thick.  In the first test case, the particles are inserted at the inlet within a single
cell, and the breakthrough curve at a downstream location (15 km from the inlet) is recorded for
the case of longitudinal dispersion with a dispersivity of 100 m.  The acceptance criterion for this
test case is that a visual comparison ensures that the particle-tracking model is reproducing the
analytical solution result to within the resolution of the plot.  Figure 2 shows the excellent
agreement of the model against the analytical solution.  This comparison meets the acceptance
criterion.  This and the analytical solution results presented in Figures 5 through 7 were
generated using the model of Leij et al. (1991), which simulates longitudinal and transverse
dispersion in a uniform flow field.  This solution is solved using the computer routine 3DADE
(see Attachment I).  This first test case assumed only longitudinal dispersion.  The other test case
displayed in the figure illustrates that the particle time-delay method used to simulate a sorbing
solute is functioning properly.
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DTN: LA9912BR12213S.001

NOTE: Comparison of breakthrough curves for a conservative and sorbing solute: particle tracking (points) versus
analytical solution of Leij et al. (1991) (curves).

Figure 2.  Comparison of Particle Tracking and Analytical Solutions

The combination of dispersion and matrix diffusion invokes different portions of the transport
model and, thus, must be tested separately.  To do this, the same transport problem must first be
applied to the case of longitudinal dispersivity of 500 m with matrix diffusion into a semi-infinite
matrix.  Similar to the previous test case, visual comparison is used as the acceptance criterion.
Figure 3 shows that the combined processes of dispersion and diffusion are properly addressed
by the algorithm, and that the acceptance criterion is met.  For this analytical solution, the option
of a semi-infinite matrix derived by Tang et al. (1981) was used to demonstrate the behavior of
the model under the limiting conditions of infinite fracture spacing.

Next, the behavior of the particle-tracking code is examined for cases in which the finite fracture
spacing solution of Sudicky and Frind (1982) is invoked to demonstrate the behavior of the
model when the characteristic distance between flowing fractures is relatively small.  In these
test cases, dispersion is set to zero to allow for comparison to the analytical solution.  For this
model, Equation 51 reduces to asymptotic behavior at two limiting extremes of parameters.  For
very slow matrix diffusion (infinitely small value of the diffusion coefficient), transport times
will approach the plug flow travel time within the fractures at the fracture porosity.  At the other
extreme (large values of the diffusion coefficient and/or small values of the fracture spacing),
transport again approaches a plug flow limit, but in this case, the effective porosity is

No sorption Retardation
factor = 3
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DTN: LA9912BR12213S.001

NOTE: Comparison of breakthrough curves for a solute undergoing longitudinal dispersion and matrix diffusion:
particle tracking (points) versus analytical solution of Tang et al. (1981) (curve).

Figure 3.  Test of Diffusion and Dispersion

approximately the matrix porosity rather than the fracture porosity.  The acceptance criterion for
this test case is visual comparison of the particle tracking and analytical solutions, and
confirmation that the extremes of possible behavior are not exceeded by the particle-tracking
code.  Figure 4 shows the results of a series of particle-tracking simulations shown spanning the
entire range of transport behavior.  The red lines represent the travel times for the limiting cases,
with a disparity of more than two orders of magnitude in travel time due to the large difference in
porosity (fracture versus matrix).  The particle-tracking simulations capture this wide disparity in
times.  The comparisons of the particle-tracking model and the analytical solution are also shown
for small (red curve, short breakthrough time), moderate (the green curves), and large amounts of
matrix diffusion (red curve, large breakthrough time).  Agreement with the analytical solution
meets the visual acceptance criterion, especially considering the wide range of travel time
behavior that the code is required to capture.
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DTN: LA9912BR12213S.001

NOTE: Comparison of breakthrough curves for a diffusing solute: particle tracking (points) versus analytical
solution of Sudicky and Frind (1982) (green curves).  The red lines are the limiting travel times for no
diffusion (short time) and complete diffusion within the matrix (long time).

Figure 4.  Test of Diffusion: Sudicky and Frind Model

Up until now, we have only tested cases with (1) diffusion only or with (2) longitudinal
dispersion with or without diffusion.  The code must also capture the transport behavior for a
solute undergoing horizontal and transverse dispersion.  A series of simulations were performed
with the Sudicky and Frind (1982) analytical solution to validate the ability of the code to
capture more complex dispersion cases and to provide accurate in-situ concentrations.  For these
simulations, the same flow field is used, but the solute is input as a patch on the inlet face of the
model.  The dimensions of the patch were 3,000 m in the y-direction and 12.5 m in the vertical
direction, starting at the surface.  Particle-tracking model runs, including both longitudinal and
transverse dispersion, were carried out with longitudinal dispersivity of 100 m and transverse
dispersivity of 0.1 m (values typical of large-scale transport in porous media, after Gelhar 1997).
As the plume progresses downstream, spreading in the vertical direction lowers the maximum
concentration of particles and allows the particles to migrate to greater depths than the original
12.5 m depth of the plume.  At long times, at a constant solute injection concentration, the plume
approaches a steady-state concentration distribution within the model.  The particle-tracking
result is processed by computing the particle plume concentrations for a pulse injection and
integrating these results to obtain the constant-injection concentration plume.
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As in the previous test cases, the acceptance criterion is visual comparison of the particle
tracking results to the analytical solution for the predicted concentration profile.  Agreement
should become noticeably better when more particles are used, due to the statistical nature of the
particle-tracking method.  Figure 5 is a plot of concentration versus depth within the plume at
various distances from the injection point.  For example, the 10,000-m curve is concentration
versus depth at steady state at a location 10,000 m downstream from the injection location.  The
agreement of the particle-tracking model and the analytical solution of Leij et al. (1991) is fairly
good (Figure 5), but the particle-tracking result exhibits some noise when only 10,000 particles
are injected.  Figure 6 is the same simulation for 100,000 particles, illustrating that the particle-
tracking model captures the dispersion process more accurately and with less noise when a larger
number of particles are used.

DTN: LA9912BR12213S.001

NOTES: Comparison of steady-state concentration profiles versus depth at various distances along the flow path:
particle tracking (points) versus analytical solution of Leij et al. (1991) (curves).  10,000 particles were used
in the simulation.

Figure 5.  Plume Dispersion Test—10,000 Particles

The final simulation of this set is designed to test the provision to prohibit particles from
artificially migrating into low-velocity fluid.  In this test case, the model domain is set up with
the same permeability in the upper half of the model as in the previous case but with a very low
permeability in the bottom half.  The same flow velocity is obtained within the high-permeability
region, but the velocity is essentially zero in the low-permeability region.  Particles are placed in
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a patch of the same size as before but immediately adjacent to the low-permeability zone.
Particles should travel immediately parallel to the low-permeability zone without migrating into
the zone.  In fact, the analytical solution is equivalent to that used in Figures 5 and 6, with the
depth below the top of the model now replaced by the distance from the low-permeability zone.
As in the previous test case, the acceptance criterion is a visual comparison of the particle-
tracking model to the analytical solution.  Figure 7 shows that the code properly accounts for this
behavior, as evidenced by the agreement of the model and the analytical solution. Closer
inspection of the results (DTN: LA9912BR12213S.001) reveals that no particles get trapped in
the low-permeability zone (all particles reach the outlet of the flow model), which is the desired
result.

DTN: LA9912BR12213S.001

NOTE: Comparison of steady-state concentration profiles versus depth at various distances along the flow path:
particle tracking (points) versus analytical solution of Leij et al. (1991) (curves).  100,000 particles were
used in the simulation.

Figure 6.  Plume Dispersion Test—100,000 Particles
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DTN: LA9912BR12213S.001

NOTE: Comparison of steady-state concentration profile versus distance from the low-permeability barrier with
distance along flow path = 15,000 m: particle tracking (points) versus analytical solution of Leij et al. (1991)
(curves).  100,000 particles were used in the simulation.

Figure 7.  Low Permeability Test—100,000 Particles
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7. CONCLUSIONS

The particle-tracking algorithm used in this AMR and implemented in FEHM V2.10 (STN:
10086-2.10-00) is suitable for performing saturated-zone flow and transport simulations for the
TSPA analyses.  The model is a considerable improvement over the TSPA-VA model because it
allows transport results to be derived directly from the saturated-zone process model rather than
through a cumbersome and difficult-to-justify abstraction process.  The flow and transport
processes determined to be relevant in the site characterization program are captured with the
model.  These processes include advection, dispersion, sorption, and matrix diffusion.  The
capability of assigning a small source region and simulating the transport of a plume that has
dimensions that are smaller than the size of a grid block are particularly attractive features of the
model.  To accomplish these goals, a new form of the particle-tracking formulation needed to be
derived to account for anisotropic dispersion—specifically, independent terms for horizontal and
vertical transverse dispersivity.  In addition, new model development was required to allow for
finite spacing between fractures in the matrix-diffusion model.  These features were incorporated
into FEHM, and extensive validation testing demonstrated that the various processes are
adequately captured in the code.  Therefore, the particle-tracking model is suitable for use in
transport analyses of the saturated zone.  However, because FEHM is currently undergoing
qualification as per AP-SI.1Q, Software Management, quality-affecting output from the code
must be given an “unqualified – To Be Verified” status until the software qualification process is
complete.

This document may be affected by technical product input information that requires
confirmation.  Any changes to the document that may occur as a result of completing the
confirmation activities will be reflected in subsequent revisions.  The status of the input
information quality may be confirmed by review of the Document Input Reference System
database.  Data developed through this AMR may be found as DTN: LA9912BR12213S.001.
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ATTACHMENT I:

SOFTWARE ROUTINE 3DADE

Routine:  3DADE Version number:  Rev 00

1. SOFTWARE ROUTINE IDENTIFICATION

The 3DADE code was developed under industry standard software Fortran 77.  This single-use,
software routine is used to verify the particle-tracking methodology described in this AMR.

2. DESCRIPTION AND TESTING

a) Description and Equations of Mathematical Models

This software routine solves the advection-dispersion equation in three dimensions and uses
constant concentration (or first-type) boundary conditions at the inlet location of the medium as
described by Leij et al (1991, p. 2720)
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(Eq. I-1)

where

R is the retardation factor
C is the volume averaged or resident concentration of the solute (ML-3)
t is the time (T)
x is the position (L) in the direction of flow
y and z are rectangular coordinates, all perpendicular to the flow direction (L)
Dx, Dy, and Dz are dispersion coefficients (L2t-1) in the x, y, and z directions, respectively
v is the pore-water velocity (LT-1)
µ  is a general, first-order, rate coefficient for decay (T-1)
λ  is a general, zero-order, rate coefficient for production (ML-3T-1).

The software routine 3DADE has various geometric source-term scenarios for which it solves
Equation I-1.  This software routine will only encompass one scenario of 3DADE.  The general
geometry and source location used for the analyses described herein is shown in Figure I-1.  This
scenario does not account for the rate coefficient for decay or the zero-order rate coefficient for
production.



MDL-NBS-HS-000010, Rev 00 I-2 July 2000

NOTE:  The direction of flow is in the x-direction, and the water table is located along the y-axis.  Note that a and –a
represent locations along the y-axis and b and –b are locations along the z axis (the vertical axis).

Figure I-1.  Schematic of Inlet and Solute Distribution for a Vertical Rectangular Source in the 3-D Solute
Transport Analytical Solution (shown centrally located about the origin of the axes)

b) Description of Software Routine Including the Execution Environment

F. Leij, T. Skaggs, and M. van Genuchten published the theory and applications of 3DADE (Leij
et al. 1991).  The paper documents the theory, assumptions, and boundary conditions used in
deriving the analytical solutions and the corresponding code used to solve the analytical solution.

The executable version of 3DADE was run on the SUN Ultra Sparc workstation at the Los
Alamos National Laboratory in Los Alamos, New Mexico.  The solution was implemented in
FORTRAN and may be complied by any standard FORTRAN 77 compiler.

c) Description of Test Cases

To ensure that the 3-DADE code calculated the analytical solution correctly, a validation
problem was designed.  The 3DADE analytical solution was verified using a 3-D analytical
solution by Domenico and Schwartz (1990, p. 646):
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where

v is the contaminant velocity
αx ,α y ,  and αz  is the longitudinal dispersivity, transverse horizontal dispersivity and

transverse vertical dispersivity, respectively
t is time
Y and Z are the source size dimensions
x, y, and z are distances along the respective x, y, or z coordinate axes.

Equation I-2 was used for the test cases to ensure the validity of the 3DADE solution.  Two test
cases were prepared: Test Case 1 is a breakthrough curve, and Test Case 2 calculates the
concentrations as a function of depth.  Computer files associated with the test cases below are
contained in DTN: LA9912BR12213S.001.

Test Case 1 (Breakthrough Case)

Inputs for the breakthrough case:

Vertical transverse dispersivity = 0.005 m
Horizontal transverse dispersivity = 0.005 m
Longitudinal dispersivity = 50 m
Source size of 3000 m in width and 12.5 m in depth (z)
Breakthrough Distance = 20000 m (in the direction of flow)
Retardation = 1.0
Initial concentration = 1.0
Velocity = 100 m/yr.
Time = 2000 yr.
Horizontal distance (y) = 0 (perpendicular to the flow direction)
Depth (z) = 0 (perpendicular to the flow direction).

The results of the 3DADE code are compared to the solution obtained from Equation I-2 and are
shown in Figure I-2.



MDL-NBS-HS-000010, Rev 00 I-4 July 2000

Validation of Breakthrough Case for 
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Figure I-2.  Breakthrough Test Case Comparing 3DADE and Equation I-2 (labelled “testcase”)

Figure I-2 shows that 3DADE and Equation I-2 predict very similar breakthrough curves.  The
input file for 3DADE is case2_brktr.in.
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Test Case 2 (Horizontal Concentrations)

Inputs for Case 2:

Vertical transverse dispersivity = 0.005 m
Horizontal transverse dispersivity = 0.005 m
Longitudinal dispersivity = 50 m
Source size of 3000 m in width and 12.5 m in depth (z)
Breakthrough Distance   = 20000 m
Retardation = 1.0
Initial concentration = 1.0
Velocity = 100 m/yr.
Time = 2000 yr.
Horizontal distance (y) = -3000 to 3000 (perpendicular to the flow direction)
Depth (z) = 0 (perpendicular to the flow direction).

Validation of Horizontal Concentrations for 3DADE 
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Figure I-3.  Comparison of Results from 3DADE and Equation I-2 (labelled “testcase”)

Figure I-3 shows that 3DADE and Equation I-2 predict very similar predictions of concentration
for horizontal spreading.  The input file for 3DADE is case2_horiz.in.
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d) Range of Input Parameter Values for which Results were Verified

The 3DADE software routine solves the 3-D advection-dispersion equation and is valid for use
in this AMR.  Test Cases 1 and 2 are representative samples.

3. SUPPORTING INFORMATION

Electronic file listing:

Software routines

3DADE.for: Software routine source listing
3DADE: Executable for 3DADE.for.

Test case files

Validation_brk.xls:
Worksheets: 1) validation_brk: output files from plume software routine and graph of

breakthrough test case
2) validation_hor: output file from plume software routine and graph of

the horizontal concentrations
*case2_brktr.in: Input file for breakthrough curve test case
case2_brktr.out: Output file for breakthrough curve test case
*plume_casebc.in: Input file for horizontal concentration test case
plume_casebc.out: Output file for horizontal concentration test case.
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